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A general technique for solving the nonlinear, transient motion of a liquid with a 
free surface has been developed. The liquid is assumed to be. irrotational and incom- 
pressible. The solution technique combines an analytical solution to the continuity 
equation with numerical solutions of the equations governing the location and velocity 
potential of the free surface. The numerical integration of the free surface boundary 
conditions is a very sensitive step in the solution. Because of the extreme importance 
of this step, a survey of integration techniques was made. Six frequently proposed 
methods for performing the integration were screened by calculating a nonlinear, free 
oscillation and monitoring total system energy. All methods were numerically consistent 
but the Euler-backward, leapfrog trapezoidal, and Heun methods were the only methods 
which were even conditionally stable. This result is in contrast with previous studies of 
linear equations, for which all of the surveyed methods were stable. 

1. INTRODUCTION 

Large amplitude motions of liquids with free surfaces occur in problems ranging 
from space technology to oceanology and even underground hydrology. In many 
of these problems, such as propellant resettling and breaking waves, viscous effects 
and rotationality are important. It is necessary to use a general computational 
technique such as the marker-and-cell Method (MAC) [I], to calculate solutions 
to problems such as these. 

There are many other problems which may be successfully treated by analytical 
or analytical/numerical techniques by assuming incompressible, irrotational flow. 
Among these are draining of liquid from a container [2], unsettling of a propellant 
[3], sloshing [4], movement of large gravity waves [5], and capillary waves [6]. 
The techniques used for solving these problems share the common advantage of 
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being computationally much more efficient than the more general methods such 
as MAC. For example, the liquid draining solution of [2] required less than l/lOth 
the computation time required for solution by MAC. These techniques also share 
the potential of being free, or nearly free of diffusive truncation errors, a common 
malady of finite difference techniques (Daly 171, and Hirt [S]). Of the analytical/ 
numerical techniques referenced above, those of Easton and Catton [2], and Moore 
and Perko [3], are suitable for the solution of initial value problems such as 
draining, unsettling and aperiodic sloshing. These two techniques are similar in 
that they both employ numerical solution of the free surface boundary conditions. 
The methods differ in that Easton and Catton use the Galerkin method to meet 
the free surface boundary conditions. Moore and Perko use orthonormalization 
to define a set of functions which are orthonormal to the series evaluated on the 
free surface. When the nonlinear surface tension term is included, no such set of 
functions can be calculated. Therefore, Moore and Perko were forced to use an 
approximate treatment of surface tension which only works when surface tension 
is not important [9]. In addition to being able to correctly treat surface tension, 
the Easton and Catton technique is very rapid in execution and apparently uses 
much less computer storage [lo], a very significant advantage with the modern 
multiprocessor computer. 

Of the computational methods surveyed, only the fully numerical solutions and 
the Easton and Catton solution were able to include nonlinear effects, surface 
tension, and gravitation. However, subsequent attempts to calculate other flows 
by the method of [2] revealed that the initial value technique employed for the 
solution of the surface equations was inadequate. The difficulty was traced to a 
truncation error arising from the finite difference representation of derivatives with 
respect to time. 

There are several explicit techniques for integrating the free surface boundary 
condition equations. Kurihara studied the stability and accuracy of solution 
techniques for the linear one-dimensional wave equation. Stability and accuracy 
of time-differencing schemes were also studied by Lilly [12] for the vorticity 
transport equation, using spectral analysis for the spatial derivatives. The analyses 
presented in these papers have shown that the differencing techniques can either 
damp or amplify disturbances in the flow. These inaccuracies are particularly 
important in the solution of the nonlinear equations governing potential flow 
of a liquid with a free surface. Therefore, the accuracy and stability of the various 
solution techniques was studied for the problem of a symmetric, free oscillation. 

Conservation of total system energy was used as the measure of accuracy .The 
general technique used for solving the potential flow problem was described by 
Easton and Catton [2], and Easton [13]. This method is summarized in Section 2. 
The initial value techniques employed are described in Section 3 and results are 
presented in Section 4. 
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2. SOLUTION TECHNIQUE FOR POTENTIAL FLOW 

Equations and Boundary Conditions 

The equations governing incompressible, irrotational (inviscid) flow are well 
known. Any of the basic texts, such as Lamb [14], may be used for reference. 

The equation of continuity, or conservation of mass, for an incompressible, 
irrotational fluid may be expressed in terms of velocity potential by 

v2+ = 0. (1) 

For convenience, 4 is made dimensionless, such that 

v = v,vf$, 

where V is the vector velocity, V is in units of tank radius for cylindrical coor- 
dinates, and V, is a characteristic velocity defined such that the dimensionless 
velocity is a combination of Froude and Weber number, 

;= [ $ 11pRDy2]1’2= G-+7&iY* 

At any solid wall, the normal velocity must be zero; hence, 

a+lan = 0, 

(2) 

(3) 

where n is a unit vector normal to the solid wall. 
There are two conditions to be specified on the free surface. One condition defines 

the location of the free surface while the other condition gives the value of 4 on 
the free surface. The two equations which result are coupled and must be solved 
simultaneously to fix the surface boundary condition on 4. The first relationship 
is termed the free-surface kinematic condition. It simply states that no fluid crosses 
the free surface. The free surface height is given by 

at/at = (a+/at) - 04 . v(. (4) 

The Bernoulli equation must hold throughout the fluid for inviscid flow. For 
irrotational flow, the constant in the Bernoulli equation is independent of stream- 
line and may therefore be absorbed into the definition of 4. On the free surface, 
the Bernoulli equation is 

a+ -= 
at 

-;“+.“+-‘- 
1 +& 

(q(t) r cos 8 + o12(t) r sin 8 
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where the accelerations, (Ye , 01~ and 01~ are in units of the mean axial acceleration. 
a3 must be periodic and small compared to 1, otherwise it is necessary to make the 
axial Bond number a function of time. 

For the present problem, Eqs. (4) and (5) will be specialized to cylindrically 
symmetric flow. The free surface will be initially flat and in motion in a first mode 
slosh wave. The accelerations, 01~ , 01~ , and 01~ will be taken to be zero. 

Application of the Galerkin Method 

The method for solving the general boundary value problems first proposed 
by Galerkin [15] has been used extensively in solid mechanics problems. The 
Galerkin method has two distinct forms. The most widely known form applies 
to cases when solutions to the differential equation are not known, and the 
boundary conditions are homogeneous or are transformed to be homogeneous. 
A solution is postulated as a finite sequence of terms, each of which meet the 
boundary conditions. The coefficients of the sequence are found by taking the 
inner product of the differential equation with an appropriate set of weighting 
functions and solving the resultant matrix equation. 

The less frequently encountered form of the Galerkin method is employed for 
the present problem. Particular solutions to the differential Eq. (1) are easily 
found. A sequence of these solutions that meets the solid-wall boundary conditions 
is found by separation of variables and set equal to the velocity potentia1 

4 = $I A,(t)[cosh(h,z>/cosh(X,h)l JoGL~), (6) 

where the A, are coefficients to be determined from the the free-surface boundary 
conditions, h is the mean height of the free surface, and the X,, are eigenvalues of 
the equations for the side-wall boundary condition, 

(d/d~KM~n~)l,=, = 0. (7) 

The free-surface boundary conditions (4) and (5) are parabolic and, therefore, 
can be integrated in time at a discrete set of points in space, given a sufficient set 
of initial conditions. Integration of the free-surface boundary equations through 
one time step leads to a new distribution of C$ over a new free surface 5. The new 
values of $ are equated to the sequence (6), evaluated at the new free surface, 

coWL(5 + WI 
cosh(h,h) 

J th > o d-, (8) 
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where # is used to represent the new numerical solution to (5) of the velocity 
potential on the free surface, matched by the expansion of 4 (6). 

The inner product of (8) with the weighting function, rJ,(h,r), is formed by 
numerical integration over the free surface (we used Simpson’s rule and 51 points 
equally spaced on the radius). There results a matrix equation, 

where 

E, = K .r ’ +hJ,(h,r) dr, 
0 

I,, = K *l j coshM5 + WI 
J 01 cosh(X,h) rJo@,r) Jo(Q) 1 dr 

K = 2/J,&), 

and a,, is the Kronecker delta. 
Equation (9) is solved by matrix inversion for the new A,‘s in the sequence (6). 

Continuous updating of the A,‘s is, of course, necessary so that current values 
of the spatial derivatives of 4 may be calculated. The spatial derivatives of the 
surface shape are to be calculated from the expansion of the surface shape 

(10) 

Repeated application of these computational steps in sequence gives a con- 
struction of the motion of the free surface as an initial value problem. 

Calculation of Total System Energy 

The figure of merit for this study is the total energy of the system. The total 
energy is comprised of kinetic, gravitational potential, and free-surface potential 
energies. The kinetic energy is given by 

where p is the fluid density, and V is the volume. Equation (I 1) can be trans- 
formed by 

V@ . V@ = v . (@V@) - Piw. (12) 
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The last term of (12) is zero by continuity. Equation (11) becomes 

(13) 

by application of the divergence theorem. n is a unit outward directed normal 
to the free surface and the integral over the solid walls is zero by the boundary 
condition (3). 

The elemental surface area is shown in Fig. I to be 

ds = 211 + f * r dr d0, 

dSp = &do 

FIG. 1. Vector diagram of surface area and resolution of ‘74 . II. 

where f = deldr, and VQ, ’ n becomes 

giving the kinetic energy as 

E,=; 
11’ ( 

CD a@ aa - __ r dr de. 
s 3Z -’ 8R 1 

(14) 

(16) 
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For a symmetric oscillation, it is sufficient to integrate in the peripheral direction 
through one radian. Equation (16) then reduces to 

a@ ~ -f aR rdr. > 

In the combined Weber-Froude number system of nondimensionalization, the 
characteristic energy is 

E, = pgR4[1 + 1 /Bo]. (17) 

Dividing by E, gives the dimensionless kinetic energy 

1 -1 

e7c - - - hi * @ rdr 
2 o az -fF 1 . 

The dimensionless gravitational potential energy is given by 

Bo El1 
eg-i-TE 0 0 ssj (z - zo) r dr d6’ dz o 

I Bo 
= 3 (1 + Bo) [j:(E +h -zoYrdr I%]. 

(18) 

(19) 

The reference height (zo) is chosen to be the mean surface height (h) and the 
constant portion is dropped. The gravitational energy departure from the rest 
state is 

1 
( 

Bo 
’ eO=? l+Bo 1s 6” r dr. o (20) 

From the definition of the coefficient of surface tension, the increase of dimen- 
sionless free-surface energy from the rest state is 

1 

es=TgFo s jJ‘ 

[ds - ds,] = & j: [dl +f” - l] r dr. (21) 

The total energy is the sum of the three contributing energies, 

ei= jlrf(s-f-$) +( 1 yBo)g 

+( 1 iBo)(dl +f2-l)]rdr. (22) 
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3. GENERAL DESCRIPTION OF INTEGRATION TECHNIQUES 

Schemes for the solution of initial value problems are broadly classified as explicit, 
iterative, and implicit. These terms are easily defined by an example using the 
equation, 

afiat = F(f; t). (23) 

Explicit methods predict the value offat the end of a time step from information 
known at the beginning, as in the Euler method, a one-term Taylor expansion in 
time, 

f n+l = f” + 6tFn, (24) 

where the superscripts refer to the time step or time level. 
The explicit scheme of (24) is always unstable unless there is dissipation in the 

equations, as shown by Daly [7] and Hirt [8]. Hence, this scheme is not suitable 
for the present, nondissipative problem. There are also explicit schemes which 
are second order in time; that is, second-order Taylor expansions are approximated. 
These schemes may be well suited to the present problem. If (24) were written as 

f n+l = f n + St F”+l, (25) 

the method would be called Euler-implicit because the right side depends on 
information which is not known until the left side is known. Successful solution 
depends on being able to substitute (25) into (23) and solve for either f *+l or 
Fn+l. When there is a system of simultaneous equations to solve, as in the present 
problem where there may be 100 simultaneous equations for surface height and 
velocity potential at points on the surface, the resultant matrix manipulations 
become very difficult. The implicit scheme may be approximated by a two-step 
or iterative process, 

f* =f”+&F” and 

f n+l = f n + St F*. (26) 

This method is variously known as Matsuno, Euler-backward, and, apparently 
incorrectly, as Euler-modified. In this scheme, f * is presumed to be a good 
approximation to f n+l if the time step is sufficiently short. Therefore, F* is a 
good approximation to Fn+l and the method gives results which closely follow the 
implicit scheme of (23). Such schemes, known as iterative schemes, may also be 
well suited to the present problem. 

Two explicit and four iterative methods were selected for further study. These 
methods are described in Table I and known features of the methods are reviewed. 
These schemes are all well known, and will not be described here. The reader 
who desires more information can find derivations in many references including 
Easton [13]. 
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4. EFFECTS OF NONLINEARITIES ON TRUNCATION ERRORS 

A simple case was set up to test the effects of the particular set of nonlinearities 
of this problem on the various integration methods. The problem chosen was 
that of a symmetric free oscillation with an initial condition of a flat surface and a 
velocity potential specified by 

4 = O.OSJ,(h,r), 

where h, = 3.831706 is the first symmetric eigenvalue. 

(27) 

This problem is particularly difficult for numerical integration because it 
represents an initial missmatching of the amplitudes of the harmonics to the 
fundamental mode. In a real free oscillation, it would not be expected that all 
harmonics have zero amplitude for both the surface shape and the surface velocity 
potential simultaneously. The problem is simplified in the sense there is no 
mechanism whereby energy can be transferred from the symmetric oscillation to 
asymmetric oscillations. 

The six promising integration methods, Adams-Bashforth, leapfrog, leapfrog 
trapezoidal, Heun, Euler-backward, and Lax-Wendroff, were used. 

A history of the total energy in a symmetric free oscillation is shown in Fig. 2 
for the six selected integration methods with a step of 0.025. Note that all six of 
the methods show an oscillation in the total energy. The oscillation appears to be 
unavoidable for these integration schemes when applied to a nonlinear advection 
problem. The source of the osicillation is not apparent, but seems to be related to 
the nonlinear interaction between oscillation modes. The more important question 
is whether there are long-term trends to these oscillations. That is, does the mean 
energy grow or decay? In the upper curve the calculations, using the Adams- 
Bashforth method, clearly show an increase in the mean value of total energy. 
In fact, this method is numerically unstable for this free-oscillation problem. 
A smaller initial amplitude would give a much more stable behavior for the 
Adams-Bashforth method. The increase of total energy was also reported by Lilly 
[12]. The leapfrog and Lax-Wendroff methods were indistinguishable on the scale 
of this plot. The existence of a long-term trend is not apparent in this plot, but 
the leapfrog method did show a catastrophic increase of energy at longer time, 
as shown in Fig. 3. The total energy follows the same pattern found by Lilly of 
increasing oscillation amplitude, together with an increasing mean total energy, 
leading to an eventual instability. 

The leapfrog trapezoidal and Heun methods are seen in Fig. 2 to follow the 
same general trend as the leapfrog method with the difference that rate of growth 
of total energy is slower. The Euler-backward method, as previously mentioned, 
shows rather strong damping, but it is the only method of those tested which does 
show damping at a time step of 0.025. 
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FIG. 2. Total energy history for a symmetric, free oscillation. 
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FIG. 3. Total energy history for leapfrog and leapfrog trapezoidal methods. 
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A check of numerical consistency was run by plotting the total energy at a 
specified time against the length of time step (Fig. 4). A numerically-consistent 
scheme should converge toward the initial energy as the time step becomes very 
short. However, the oscillation of the total energy would prevent these methods 
from converging to the initial total energy. The leapfrog trapezoidal and Heun 

1.8 1.8 

1.6 1.6 

1.4 1.4 

1.2 1.2 

1.0 1.0 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 
0 0 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 

TIMESTEPLENGTH 

FIG. 4. Total energy dependence on time step length at dimensionless time = 3.0. 

methods appear to be the most accurate, hence they will be taken as the norm. 
In Fig. 4, the value of total energy at time = 3.0 is ratioed to the value for the 
leapfrog trapezoidal method with a short time step. Time steps of 0.0125, 0.025, 
0.0375, and 0.05 were chosen. The time when the comparisons were made (3.0) 
corresponds to the maximum time in Fig. 2. 

The results of Fig. 4 compare quite well with those published by Kurihara [ 111. 
All second-order techniques approach a horizontal tangency as the time step is 
reduced toward zero. The Adams-Bashforth method is seen to produce an increase 
of total energy that depends only mildly on the length of the time step, but this 
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method diverges for the larger time steps. Hence, care must be taken to keep the 
time step small when using this method. It can be assumed with confidence that 
the solution using Adams-Bashforth is bounded if the time step and total time are 
sufficiently short. The leapfrog and Lax-Wendroff methods have a lesser depend- 
ence on time step, but both methods do seem to amplify the total energy. 

The Euler-backward method shows damping that increases strongly with the 
length of the time step. Whether the method is numerically consistent could not be 
determined from the four time steps used. By adding a fifth step, at St = 0.005, 
the method is shown to be numerically consistent. Figure 5 shows that the history 
of total energy for the Euler-backward method approaches that of the leapfrog 
trapezoidal method for a sufficiently short time step. 

LEAPFROG 
TRAPEZOIDAL ~ 

0 1.0 2.0 3.0 4 

TIME 

FIG. 5. Total energy history dependence on length of time step. 

The total energy is a very sensitive measure of the accuracy of a solution 
technique. Figure 6 shows a comparison of the surface shape for six integration 
methods at a time = 2.0 near an extreme of the surface. On the left side, the 
leapfrog trapezoidal technique is compared to the Adams-Bashforth technique. 
Despite the fact that the Adams-Bashforth curve contains 70 y0 more energy than 
the leapfrog trapezoidal, there is only a small difference in the surface shape that 
shows up as a difference in higher harmonics. The leapfrog and Lax-Wendroff 
methods show virtually the same result as the leapfrog trapezoidal and Heun, 
and the Euler-backward method approaches these very closely for a smal1 time step. 
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RADIUS 

FIG. 6. Dependence of free-surface shape on integration method. 

5. CONCLUSIONS 

It might be expected then that the leapfrog trapezoidal or Heun method would 
be the optimum method for solving the potential flow problem. Indeed, they 
probably would be the optimum methods for solving a dissipative problem. But 
for the present nondissipative problem, two irreconcilable difficulties arise. First, 
the time step required to introduce any damping into the primary wave to control 
an insipient numerical instability shown by Easton [13] is quite large for the 
leapfrog trapezoidal method. Damping cannot be induced by the Heun method. 
Second, a time step sufficiently large to introduce damping is too large if many 
modes and harmonics of oscillation are desired in the solution, and the solution 
again becomes unstable. The problem becomes compounded when the higher 
modes tend to be captured by the nonlinear interaction of the lower modes and 
to not behave as free oscillations. This point is illustrated in Fig. 7, where the 
coefficients of the sixth harmonic of the first symmetric mode are plotted against 
time for a free oscillation. The wave height and velocity potential begin 90” 
out of phase, as in a free oscillation, but are soon changed and bear no resemblance 
to the free oscillations as time goes on. This phenomenon, called entrainment of 
frequency, is characteristic of nonlinear oscillations and was reported to have been 
observed experimentally by Ladeke [ 161. The result of entrainment of frequency is 
that the actual period of the higher harmonics may be much less than the natural 
free-oscillation period. 
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:A = COEFFICIENT OF VELOCITY POTENTIAL EXPANSION 

FOG. 7. Amplitude history of velocity potential and surface displacement. 

The conclusion from the above study is that for short times, any of the inte- 
gration methods above would be acceptable; for longer times, the Euler-backward 
method is the only method that has sufficient damping to control the incipient 
instability of the equations. The method to be used should be selected in accordance 
with the need of the particular problem in question. 
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